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Abstract
The current study introduces the Rayleigh geametrocess model for the analysis of acceleratfed li
testing under constant stress. The geometric psabescribes a simple monotone process and hasapeéed to a
variety of situations such as the maintenance problin engineering. By assuming that the lifetimelar
increasing stress levels forms a geometric procgssierive the maximum likelihood estimators of Rayleigh
parameter in case of complete and censored dataed&ah type, we also derive confidence intervals tfe
parameters using asymptotic distribution. The perfnce of the estimators is evaluated by a sinaulattudy with

different pre-fixed parameters.’

Keywords: Geometric process, Maximum Likelihood Estimateéisher Information Matrix, Asymptotic Confidence

Interval, Simulation Study.

Introduction

Development of highly sophisticated products,
intense global competition, and increasing customer
expectations has put new pressures on manufactiarers
produce high-quality products. In order to ascarthie
service life and performance of a product, life tesder
normal operating conditions is clearly the mosiatgeé.
The standard life testing methods would requirerg|
period of time to obtain enough failure data negsso
make inferences. Hence, they are not suitable aveb
situations. For some products, it is possible wekrate
failures, and hence obtain failure information ¢lycby
using the products more intensively than in uswealec
According to such properties, the design and amabyfs
the Accelerated Life Test (ALT) are very importdmm
a practical viewpoint.

ALT, generally deals with three types of stress
loadings: constant stress, step stress and Progress
stress. Constant streissthe most common type of stress
loading, in which every item is tested under a tams
level of the stress, which is higher than normaeleln
this kind of testing, we may have several stresglée
which are applied for different groups of the tdstems.
This means that every item is subjected to onlysiress
level until the item fails or the test is stopped bther
reasons. If the stress level of the test is nolt leigough,
many of the tested items will not fail during theadable

time and one has to be prepared to handle a lot of

censored data. To avoid this problem, step-stesting
can be applied, in which, all items are first sahge to a
specified constant stress for a specified periodiroé.
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Items that do not fail will be subjected to a highevel
of stress for another specified time. The levestoéss is
increased step by step until all items have fadedhe
test stops for other reasons. Progressive-stoaskngis
quite like the step stress testing with the diffie that
the stress level increases continuously.
Failure data obtained from ALT can be divided itim
categories: complete (all failure data are avadplr
censored (some of failure data are missing). Cotaple
data consist of the exact failure time of test gynithich
means that the failure time of each sample unit is
observed or known. In many cases when life data are
analyzed, all units in the sample may not fail.sTtyipe
of data is called censored or incomplete data. fBee
more details, Bagdonavicius and Nikulin [5], Meeked
Escobar [17], Nelson [19, 18], Mann and Singpursavall
[16].

with different type of data and planning has
been studied by many authors. Pan et al. [20] mepa
bivariate constant stress accelerated degradagsh t
model by assuming the parameter, a function ottess
levels. Yang [24] proposed an optimal design oével
constant-stress ALT. Fan and Yu [8] discuss the
reliability analysis of the constant stress aceeéat life
tests in case of generalized gamma lifetime distidin.
Chen et al. [6] discuss the optimal design of midti
CSALT plan on non-rectangle test region. Saxenal.et
[22] discussed the case of Rayleigh lifetime distiion
for step stress accelerated life testing (SSALTatkivis
and John [23] consider constant stress accelelded
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tests based on Weibull distributions with constimpe
and a log-linear link between scale and the stiad®r.
Ding et al. [7] dealt with Weibull distribution tobtain
ALT sampling plans under type | progressive intérva
censoring with random removals. Ahmad et al. [l
and Ahmad [10], Ahmad and Islam [2], Ahmad, ef{4].
and Ahmad [1] discuss the optimal constant stress
accelerated life test designs under periodic inspec
and Type-| censoring.

Definition

A stochastic process {X,,n=12,...}is a geometric
process (GP), if there exists a real A >0such that

{/1'1_1Xn ,n=12, .. }formsarenewal process (RP). The
number A iscalled theratio of the GP.

The concept of GP is introduced by Lam [13] in
the study of repair replacement problem. Large arhou
of studies in maintenance problems and systemnbilija
have been shown that a geometric process model JGPM
is a good and simple model for analysis of datd \ait
single trend or multiple trends, for example, Land a
Zhang [15], Lam [14] and Zhang [25]. So far, there
only three studies that utilize the GP in the asialyf
ALT. Huang [9] introduced the GPM for the analysfs
ALT with complete and censored exponential samples
under the constant stress. Kamal et al. [12] extdrite
GPM for the analysis of ALT with complete Weibull
failure data under constant stress. Zhou et al] [26
considered the GP implementation of the CSALT model
based on the progressive Type-l hybrid censored
Rayleigh failure datakKamal et al. [11] used the GP for
the analysis of CSALT for Pareto Distribution with
complete data. Saxena et al. [21] studied the chk®-
logistic GPM in case of censored data.

In this paper, the analysis of CSALT for
Rayleigh distribution with complete and censoredada
by using the GPM is considered. Estimation of
parameters is carried out by maximum likelihood (ML
technique. Asymptotic confidence intervals for
parameters are also obtained. Statistical propertie
estimates and confidence intervals are examinexgir
a simulation study.

The Modd
The Geometric Process
Let us define the GP. Suppose that

X1, X5,..., X,is a sequence of random variables. If

there existsA >0 such that{)ln_lxn,n =12,...}forms
a renewal process (RP) with a constant mg¢anthen

X1, X5,...,X,, is called a GP and the real numberis
called the ratio of the GP.
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It can easily be noted that a GP is stochastically
increasing for0 < A <1 and stochastically decreasing in
case of A >1. GPM can identify trend effects by two
parameters: the meafy of the underlying RP and the
ratio A which measures the direction and strength of a
trend. With the inherent geometric structure, fastc
using the GPM is simple and straightforward.

Mean and Variance of a Geometric Process:

It can be shown that i X,,,n=123,...} is a GP and

the pdf of X; is f(X)with mean x/ and varianceg?
then the pdf ofX, will be

f(Xp)=A"H (A7), n=123..
with E(X,) :)If‘l_l

0.2
andVar(X,,) :W

Thus A, g and o are three important parameters of a

GP.
The Rayleigh Distribution

The Rayleigh distribution has played an important
role in modeling the lifetime of random phenomeha.
arises in many areas of applications, includingbdity,
life testing and survival analysis.

The life time of a product at any level of stress i
assumed to follow Rayleigh distribution with scale
parametef . The probability density function (p.d.f.) of
Rayleigh distribution is given by

X2

f(x):e—);e_%’z, 0<x<w,8>0 (1)

Cumulative distribution function (c.d.f) is givey b

X2

F(x)=1-e 25", 0<x<0,8>0 (2)
The corresponding survival function is

X2

S(x):e_g, 0<X<®,8>0 3)
The hazard function of, denoted as
h(x) = f (X)/ S(X) is obtained as

X
h(x) =2

Assumptions
The geometric model for ALT is based on the
following assumptions:
(1) Suppose that an ALT undgg,k=12...,s,

arithmetically increasing stress levels s

0<Xx<®,8>0

(C) International Journal of Engineering Sciences & Research Technology

[2232-2239]



[Saxena, 2(9): September, 2013] ISSN: 2277-9655
Impact Factor: 1.852

performed. A random  sample  of stress. We assun{eX, .k = 012...,s} is a GP
N;,i = 12...,n, identical items is placed under with ratiod >0
each stress level and start to operate at the same Based on the definition given in subsection 2. Hgifisity

time. Whenever an item fails, it is removed  fynction ofX ,is f (X), then the pdf ofX will be given
from the test and its observed failure timg is by

recorded. ok K _
(2) At any constant stress level, thduct lifetime F(Xk)=A" T (A7), k= 0’1'2""’_5 _ _
has a single parameter Rayleigh distribution. Therefore the pdf of a product lifetime (following
(3) Let the sequence of random Rayleigh distribution) at th&™ stress level is
variablesXy, X;, X,,...,Xg5, denote the 2k 2k 2
- s A A
lifetimes under each stress level, where fy, (x16,4) ——e > 4)
Xpdenotes item’s lifetime under the design o° 20

Maximum Likelihood Estimation
Case (i) Complete Data

Here the ML method of estimation is used becauseméthod is very robust and gives the estimatesrcdrpeter
with good statistical properties. In this methdte estimates of parameters are those values whagimize the sampling
distribution of data. The ML estimation method ieryw appropriate for one parameter distributions afgb its
implementation in ALT is mathematically more intens&enerally, estimates of parameters do not @xistosed form,
therefore, numerical techniques such as Newton dtke#md some computer programs are used to contparte t
The Iikelihood function for CSALT for the Rayleigtistribution using GPM can be written as

L(x|6,1) = |'||'| f (x]A,6)

k=1li=1

2K 2k 2

s n xk, AT X
- 5
gLl % 292} ©

It is usually easier to maximize the logarithm loé fikelihood function rather than the likelihoaghttion itself.
Therefore, by taking the logarithm of the likeliltbfunction, (5) becomes

S n AZKXE
I =logL(x]|6,4) =S {2klogA +logx, — 2logd - 2492I (6)
k=1i=1

ol
The maximum likelihood estimators ofl,and & can be obtained by SO|ViI?/1—=O, and %:O respectively

I al
for A, and@ where the values o%, andﬁare given as

s n kA (2k-D) 2
sggfa e

A Sia 62
ol S0 2 A%x?
—_ _ 8
0 kzzlizzl{ A= ©

From equations (7) and (8), it is observed thasg¢hequations are non linear. Therefore, the clémads of MLES
of A,and 8 do not exist. So, Newton-Raphson method must bd tssolve these equations simultaneously to e

MLEs of A, and 4.

Case (ii) Censored Data
For Type | censoring scheme, the test at eachsstesgl terminates at tinie An item’s exact failure time is

observed only if its lifetime i%; <t . It is assumed that at the' stress levelr, (< n) failures are observed before the
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test is suspended. Correspondindlyi,— ry ) units survive the entire test without failing. Thleserved ordered failure times

under thek™ stress level can be written 8&1) < Xg(2) <+ < Xg(r ) - Here, U is fixed in advance andy is random and

therefore the likelihood function using GP for fRayleigh distribution under CSALT for Type | censdrdata is given by
Lo lA.0)= {n fx (X(|))}[Sx (o ©

where, Sy, (t)is the probab|I|ty that an item is censored at tinamd

Ky 2
Sxk(t):exp{— (/;;Z} (10)

Using eq. (10), the likelihood function for one e stress levels corresponding to eq. (1) for inistg the ML
estimates ofd and @is given by

(n-nr)
nto |k A% A%)? A0°*
§ (XM'Q):(n—rk)![Dl ezxexp{_%ﬂlm{_(zﬂz H | (11)

It follows that the likelihood function of observedta in a totak stress levels is:
L (X[A,8) =Ly xL, x---xLg

(n1)
=r5| n! Ir_klA %) oo - A%a)® | 02
ke (N=r)!fia 62 26° 262

OSXk(]_)SXk(z)S"'SXk(r)_t 1<k<s (12)
The log-likelihood function corresponding to (12kes the form
| =logL(x|A,8)
k 32 s _ Kax 2
—zl 9 + 33| 2klogA +logy, ~ 2logh - W) S (=)l (19)
L L= 20 k=1 20

The first order derivatives dbgL (x| A, 8) are given by

-3 3| W5y | g 2= 1)
(M k=l i=1 6? =l A
O _ & &% ok 2|, & (n-r)Ay?
—= ARy KR (15)
06 kzl E_{ 93 6 kz=1 63

The equations (14) and (15) are quite compleximfto be solved. So, the Newton-Raphson methodes to solve
these equations simultaneously to obtadnand &.

Asymptotic Confidence Intervals

According to large sample theory, the ML estimatorsder some appropriate regularity conditions,canesistent
and normally distributed. Since ML estimates ofgmageters are not in closed form, therefore, it ipassible to obtain the
exact confidence intervals, so asymptotic confidemttervals based on the asymptotic normal distidlbuof ML
estimators instead of exact confidence intervadsobtained here.
The Fisher-information matrix composed of the negasecond order partial derivatives of log likelild function can be
written as
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F:Fn [12}
lo1 1o

Where in case (i)

« 92l 82k, k(K- DACK-2)y2
o))

aA?

k=1i=1
« 02 ) &0 |3a%*x2 2
| 22 - 2 |7 ZZ 4 < - 2
06 k=i=1| & 6
~ F| R s n 2k/l(2k_l)x|f-
| = - = = e — |
12 aem} “ kzg{ 6°

- _a%j 2 Z{Zk k(2K ~1)xZ;) 2<k-1>}+rzk 2K 2k ~1)(n -1, ) (A )2

A2 ) aia 62 = 22
. 921 ) & I |3xgg 2| & 3n-r)A )2
|22: [ — > :Z Z 4(.|) /12k __2 +Z k4

06 k=1i=1| € [ k=1 g
) 0% ) &5 206 | & 2K(n - ) (A1)
I, =| - =l =) D4 3(')/12k1 -y g

00A k=1 i=1 g k=1 G°A

Now, the variance covariance matrix can be writen
~ ~ -1 ~ A A
s = [11 [12 _| Avar (112 ACov(/]AH
ACov(A8) AVar(6)

The 100(1- y)% asymptotic confidence interval for antl, and & are then given respectively as

[ji Zl—l w/AVar(j)] : an{éi Zl_Z \/AVar(é)] :
2 2

I21 |22

Simulation Study

To assess the performance of the methods desdnbprksent study, a number of data sets with sasiplkes
n=50100,...,20 are generated from Rayleigh distribution. The galfor parameters and stress levels are chosen to
bed =3.7502, = 050ands =2 and 3. For different given samples and stress levelsMh estimates, Mean squared
errors (MSEs), absolute relative biases (RBias)atRe Error (RE), and the 95% asymptotic confidematervals for
A,and@ are obtained by using the present GP model usiad\ewton-Raphson iteration procedure. The resdltae

estimates ford, andd based on 1000 replications are summarized in Thlaiad 2 for case (i) and in Table 3 and 4 for
case (ii) respectively.
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Table 1: Simulation study resultswith A = 3.7502, 8 = 0.5000, and S=2 for complete data

Sample Size | Parameters | Estimates | MSE RAB | RE LCL UCL
50 A 3.7512 0.0725 | 0.0003| 0.0718| 3.2235| 4.2789
6 0.4823 0.0407 | 0.0354| 0.4036| 0.0883| 0.8763
100 A 3.6573 0.0822 | 0.0248| 0.0765| 3.1256| 4.1890
17 0.5076 0.0413 | 0.0152| 0.4062| 0.1098| 0.9054
150 A 3.7528 0.0745 | 0.0007| 0.0728| 3.2178| 4.2878
g 0.5098 0.0440 | 0.0196| 0.4195| 0.0991| 0.9205
200 A 3.7534 0.0753 | 0.0009| 0.0732| 3.2156| 4.2912
6 0.5123 0.0442 | 0.0246| 0.4202| 0.1012| 0.9234
250 A 3.7543 | 0.0756 | 0.0011| 0.0733| 3.2154| 4.2932
6 0.5058 0.0445 | 0.0116| 0.4220| 0.0923| 0.9193

Table 2: Simulation study resultswith A =3.7502, 8 = 0.5000, and S= 3for complete data

Sample Size | Parameters | estimates | MSE | RAB | RE LCL UCL
50 A 3.7661 0.0155| 0.0042| 0.0331| 3.5245 | 4.0077
[ 0.4870 0.0172| 0.0260| 0.2621| 0.2314 | 0.7426
100 A 3.7652 0.0101| 0.0039| 0.0268| 3.5702 | 3.9602
g 0.4928 0.0698| 0.0144| 0.5282| -0.0247| 1.0102
150 A 3.7589 0.0101| 0.0023| 0.0268| 3.5629 | 3.9549
) 0.4936 0.0752| 0.0128| 0.5486| -0.0439| 1.0311
200 A 3.7572 0.0165| 0.0019| 0.0343| 3.5054 | 4.0089
6 0.4958 0.0634| 0.0084| 0.5037| 0.0023 | 0.9893
250 A 3.7568 0.0092| 0.0018| 0.0256| 3.5688 | 3.9448
) 0.4952 0.0689| 0.0096| 0.5251| -0.0182| 1.0086

Table 3: Simulation study resultswith A =3.7502, = 0.5000, and S= 2for censored data

Sample Size | Parameters | estimates | MSE | RAB | RE LCL UCL
50 A 3.7652 0.0610| 0.0040| 0.0659| 3.2819| 4.2484
g 0.5182 0.0158| 0.0364| 0.2516| 0.2742| 0.7622
100 A 3.7673 | 0.0638| 0.0046| 0.0673| 3.2734| 4.2612
0 0.5038 0.0148| 0.0076| 0.2434| 0.2654| 0.7422
150 A 3.7598 0.0765| 0.0026| 0.0737| 3.2184| 4.3016
17 0.4918 0.0089| 0.0164| 0.1883| 0.3079| 0.6757
200 A 3.7568 0.0619| 0.0018| 0.0663| 3.2692| 4.2444
0 0.4843 0.0164| 0.0314| 0.2565| 0.2348| 0.7338
250 A 3.7587 0.0648| 0.0023| 0.0679| 3.2602| 4.2572
17 0.4947 0.0153| 0.0106| 0.2476| 0.2523| 0.7371
Table 4: Simulation study resultswith A =3.7502, 8 = 0.5000, and S = 3for censored data
Sample Size | Parameters | estimates | MSE | RAB | RE LCL UCL
50 A 3.7595 0.0183| 0.0025| 0.0361| 3.4951 | 4.0239
g 0.4914 0.0040| 0.0172| 0.1261| 0.3689 | 0.6138
100 A 3.7542 | 0.0179| 0.0011| 0.0357| 3.4919 | 4.0164
o 0.4928 0.0657| 0.0144| 0.5125| -0.0092| 0.9948
150 A 3.6823 0.0178| 0.0181| 0.0356| 3.4571 | 3.9075
g 0.4967 0.0078| 0.0066| 0.1767| 0.3236 | 0.6698
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200 A 3.6624 0.0191| 0.0234| 0.0369| 3.4531 | 3.8716
% 0.5069 0.0092| 0.0138| 0.1923| 0.3189 | 0.6948
250 A 3.6989 0.0128| 0.0137| 0.0302| 3.5009 | 3.8968
6 0.5112 0.0164| 0.0224| 0.2563| -0.1991| 0.3014

Discussion and Conclusion

This paper deals with use of GP model in the
analysis of constant stres8LT plan for Rayleigh
distribution with complete data as well as censatata.

The MLEs, MSEs, RBias, and RE of the model
parameters were obtained. Based on the asymptotic
normality, the 95% asymptotic confidence intervafs

the model parameters were also obtained in both the
cases.

It is observed that the estimates obtained in the
simulation study are very close to the true valokthe
parameters and are also quite well with relativatyall
mean squared errors. In the whole study, the paesame
are estimated for different cases and it is foumat &s
the sample size increases, the MSE gets smaller. It
implies that a larger sample size results in acbé#irge
sample approximation. Hence, it can be said that th
proposed GPM can be used in the analysis of ALT.
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